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The essential difference, from the theoretical point of view, between an exter- 
nally excited lciody and a fish is that the latter can apply lateral vibratory 
movements at any part of its surface, whereas in the ‘artificial fish’ lateral 
vibrations are ;applied only at the point where the external force acts on the 
body. A good example which illustrates how the artificial fish swims is the ‘Pod’. 
The Pod is a medical device consisting of a small magnet attached to  a plastic 
‘tail’. If the Pod is placed in a patient’s blood vessel, and an alternating magnetic 
field is applied, the magnet oscillates angularly and the plastic tail causes it to 
swim. The purpose of the device is to deliver medicaments at  any desired location 
in the circulatory system. 

In this paper the theory of swimming of elastic slender bodies excited by an 
external force is presented. Special reference is made to the hydrodynamic 
forces acting on a swimming cylinder in viscous fluctuating flow. The results 
obtained are used in the analysis of the propulsion mechanism of the Pod. 

1. Introduction 
We consider B slender elastic body swimming with uniform velocity U in an 

infinite viscous :bid.  Figure 1 represents such a body of length 1. Let us suppose 
that the motion is confined to the x ,  x plane and let h(x ,  t )  denote the small lateral 
instantaneous displacement of the cross-section A ( x ) ,  where 0 < x < I and t is 
the time. F(x,  t )  is the time-dependent external force per unit length acting in 
the x direction and L(x,t) is the local hydrodynamic lift. From the theory of 
vibrations of elastic beams the equation of motion of the body can be put in the 
form 

Here m ( x )  denotes the mass per unit length of the material of the body, E is 
Young’s modulus and I(%) is the moment of inertia of the cross-sectional area 

The thrust force P, which causes the body to swim, is calculated by integrating 
the product of the lateral forces and the instantaneous slope ahlax along the 

A (4 * 

ah length of the body, i.e. 
(F(& t )  + L(X’ t))&x. 
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FIGURE I. An elastic body of length 1. The body is regarded as oscillating in the z direction 
in a stream of velocity U in the Ox direction. 

When the propulsion force is generated and the body starts moving, it appears 
that a drag force is being generated also. The drag D is given by 

D = +pC,SU2, (3) 

where p is the density of the liquid, C, is the drag coefficient and X is the reference 
area. When the drag balances the thrust we get H = D, where P is the mean 
thrust averaged over a long time. From this equality we can determine the 
swimming velocity U .  

Longman & Lavie (1966) analysed the swimming of the Pod by using the 
results obtained by Lighthill (1960a, b )  for the hydrodynamic forces. From 
slender-body theory these forces were found to be 

where the bars over the quantities denote their long-time averages and p.&x) 
is the ‘virtual mass’ per unit length of a cylinder having cross-sectional area 
A(x) ,  for motions in the z direction. Thus d(x)  is equal to A(%) when the latter 
is circular, while for an ellipse with minor axis in the z direction, d(x)  is the 
area of its circumscribing circle. 

Longman & Lavie used equations (4) in the solution of (1) and calculated the 
thrust H accordingly. But since slender-body theory assumes the existence of a 
potential inviscid ffow around the body and L(x, t )  does not include any term 
proportional to &/at it follows that (1) describes a free undamped motion of the 
lateral displacement h(x, t ) .  Hence, when the frequency of the external force 
F(x,t) coincides with the natural frequency of the body resonant conditions 
appear and the displacement h(s, t )  tends to infinity. In  practice such conditions 
do not exist. This fact was also proved experimentally (see Lavie 1970a, b).  

I n  order to improve the theoretical results Longman & Lavie suggested the 
inclusion in the expression for the instantaneous lift L(x, t )  of a term proportional 
to ,u &/at, where ,u is the dynamic viscosity. Later on Lavie (1970a) developed 
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a new model for the propulsion mechanism of a slender flexible cylinder in 
viscous flow. The new results for L ( x ,  t )  and P agree well both with the necessity 
to damp out the persistence of free oscillations and with the experiments. When 
the viscosity is equal to zero the new forces coincide with the forces in (4). In  the 
next section we shall describe briefly the paper Lavie (1970a) and in 8 3 we shall 
apply the results to the theory of the swimming of the Pod. Also, a few more 
remarks are made about the swimming of slender bodies inside tubes and pipes. 

2. The hydrodynamic forces acting on a flexible cylinder swimming in 
a viscous flow 

Referring to figure I, the flow field around the slender cylinder will be des- 
cribed by solving the Oseen equations. There are several reasons for using the 
Oseen equations in this particular case. First of all, we know that in order to 
calculate the lift of a two-dimensional cylinder vibrating perpendicularly to its 
longitudinal axis it is convenient to use the Stokes equation. Segel (1961) has 
remarked that the Stokes equations give better results than the boundary-layer 
equations when the lift is calculated. Stuart & Woodgate (1955) found that the 
theory is in good agreement with the experiments for a small lateral movement 
whose amplitude is 0.1 of the radius of the cylinder (for a more extensive dis- 
cussion of the problem see Lavie (1970~) ) .  

Here we treat the case when a uniform velocity U is superimposed on the 
whole liquid-body system, and the use of the Oseen equations rather than the 
Stokes equations is essential. Kaplun (1957) and Kaplun & Lagerstrom (1957) 
have also pointed out that as the Reynolds number of the flow tends to zero the 
Oseen equationsi are uniformly valid. In  time-dependent flow one must dis- 
tinguish between two Reynolds numbers. One of them is related to the uniform 
velocity U and the second one is related to the lateral velocity of the cylinder’s 
cross-section. For the Pod the fist Reynolds number ranges between lo2 and 
lo* and the second Reynolds number is less than lo2. We shall assume that the 
analysis represented here is restricted to small lateral movements of the cross- 
section as found by Stuart & Woodgate (1955). Lavie ( 1 9 7 0 ~ )  used the Oseen 
equations in three dimensions and applied certain assumptions about slender 
bodies. 

For slender bodies the derivative of a certain hydrodynamic quantity in the 
x direction is of the order 6 in comparison with the derivatives in the y and the 
z directions, where B = all and a is the radius of the cylinder. In  fact, if u, v and 
w are the fluid velocities in the x, y, and z directions respectively, au/ax is of 
order s2 relative to av/ay and awlax. To show this, let us assume for the moment 
that the flow is inviscid and has a potential 9 such that au/ax N s2a2$/ax2, while 
avpy = a2#/ay2 and awl& = a2#/az2. Thus for slender bodies we can ignore the x 
derivative in the equation of continuity and write 

(5) 
dv dw d u  dv dw - +- N - +-+--0. 
dy a2 ax dy dz 

Equation (5) shows that a two-dimensional flow exists around any cross-section 
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of the cylinder. The magnitude of this flow is determined by the distance x, by 
the time t and, of course, by y and x .  Thus there exists a stream function $(x, y ,  x ,  1 )  
such that 

v = a$Iaz, w = -a$/ay. (6) 

Referring to the Oseen equations and (5) and (6) we see that the equations for 
the velocity components 'u and w are independent of u. Therefore we can treat 
the following two equations independently of tihe components in the x direction 
in the Oseen equations. 

2v av iap 
at ax p a y  

aw aw lap -+ U - + - - - V A ~ W  = 0, 
at ax pax 

- + U - + - - - V A ~ V  = 0, 

(7) 

where p is the pressure, v is the kinematic viscosity and 

= a21ay2 + a 2 / a x 2 .  (8) 

Equations (7 )  are the equations of the flow around the cross-section at given 
x. One boundary condition related to these equations is that a t  infinity the 
velocity components v and w become zero and the pressure p is equal to the 
static pressure p,. Another boundary condition is that on the cylinder the 
velocity component w should be equal to the lateral velocity of the cylinder's 
cross-section ah/& where h(x, t )  is the lateral displacement. However, the last 
condition is somewhat questionable. If, for instance, we had potential flow, and 
liquid slipping on the cylinder surface were possible, then the lateral velocity 
would be ah/at+ Uah/ax, where the term Uah/ax accounts for the additional 
velocity due to the local instantaneous slope. In  actual practice, if separation 
does not occur the lateral flow is accelerated from velocity ahlat on the surface 
of the cross-section to some velocity of approximate value ah/& + U ahlax at the 
edge of the boundary layer. From there the velocity decreases as the radial 
distance increases, and tends to zero at inhity.  

Even if we knew the exact distribution of the lateral velocity we could not 
describe this distribution by applying sufficient boundary conditions because 
the Oseen equations are not suitable for this purpose. The solution of the Oseen 
equations implies that once the lateral velocity of the cylinder is given it de- 
creases monotonically as the radial distance increases. Hence, in order to get a 
good comparison with slender-body theory we assume the following boundary 
conditions: 

v = 0, w = V = ah/at+ uahlax, on r = ( y 2 + ~ 2 ) +  = a, 
v = 0, w = 0, p = p m ,  at r = (y2+x2)+ = co, } (9) 

where a is the radius of the cylinder. Let us also assume that h(x, t )  is small and 
has the form of a simple harmonic oscillation, i.e. 

h(x,t) = exp[i(Qt-~x)]F(x), aF/2z < 1, (10) 
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where s2 is the angular velocity, K is the wavenumber and P(x)  is the envelope 
of the amplitudes and, in general, is a complex function. 

The solution of (6) and (7) using the boundary conditions (9) and (10) was 
given by Lavie ( 1 9 7 0 ~ )  in the following form: 

where 

sin8 2 a2 
$ = V ( x ,  t )  - [- K ,  (cr) - - K ,  (ca)),  Ko(ca) c r 

V(z, t )  = - + u- ah ah 
at ax' 

is the stream function defined by (6), I' is the vorticity function, KO, K ,  and K ,  
are the Bessel functions of orders zero, one and two defined in Watson (1962) 
and the coefficiient c is defined by 

C2 = i (a-KU)/V.  (14) 

The forces FB and FII acting on the cylinder in the z and in the y directions are 

'15) 

1 

1 
given by 

4 = - jr (up cos 6 + 2pvaF sin 0) d6, 

F II = - ~ ~ ~ ( a p s i n 6 - 2 ~ v a r c o s 6 ) d 6 .  

Substituting thlo values of p and I? in (15) and evaluating the integrals one gets 

Fu = 0, A = nu2, 

Fz= -pA[(g+U-)-+-V-].l aV K2(ca) 2vc K,(cu) 
ax Ko(ca) u Ko(cu) 

Note that Fz is actually the lift and in the following argument we shall use the 
notation L(x,t) for this force. The functions KO, K ,  and K ,  can be expanded 
asymptotically, giving 

By substituting (17) into (16) and using the definition (14) we can simplify the 
result for the lift: 

L(x ,  t )  = -pAR,e V +...I 
45 FLM 53 



706 A .  M .  Lavie 

where Re means the real part. If V(z ,  t )  is real we can write L(x, t )  also as 

The propulsion force P, which causes the cylinder to swim, is calculated as 

The first part of (19) is calculated by integrations by parts: 

We are interested in the mean of the thrust force over a long time. Obviously, 
when P is averaged, the first term of the above expression becomes zero. Thus 
we have the following expression for the average thrust H: 

where the bars over the terms denote their mean value over a long time. 
The average power w required for swimming was found (Lavie 1970a) to be 

The efficiency 7 of the swimming is related to the following expression: 

where P and w are given by (20) and (21). 
7 = PUIW, ( 2 2 )  

3. The swimming of the Pod 
As has been mentioned already, Longman & Lavie (1966) analysed the theory 

of the swimming of the Pod by using the hydrodynamic forces derived by 
Lighthill (19606) from slender-body theory (see equations (4)). In  order to 
improve their results, they suggested the inclusion in the lift force of an addi- 
tional term proportional to ,uah/at7 where ,u is the dynamic viscosity of the 
liquid. The results for the hydrodynamic forces obtained in the last paragraph 
are much more appropriate for the swimming of the Pod than the results obtained 
from slender-body theory. Therefore we shall try to improve the theory of the 
Pod by including the local lift L(x,  t )  (see (18)) in the equation of lateral move- 
ments ( 1 )  and also by calculating the thrust force and the required power 
according to (20)  and (21). 

I n  order to make equations ( I )  tractable Longman & Lavie made the following 
assumptions about the Pod (see also figure 1) .  
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(i) A(%) = A == constant over the main body of the tail. It is true that it may 
be desirable to have A ( a )  different from A (0) , but nevertheless A($) will be kept 
constant over the main body of the tail. It is probably sufficient to vary A(x)  
only over the rigid head of the permanent magnet (where (1) does not apply) in 
any case. 

(ii) m(x) = m = constant; I ($)  = I = constant - in agreement with assump- 
tion (i). 

(iii) Except in the immediate neighbourhood of x = 0,  the amplitude of the 
transverse velocity ah/at of the Pod is much higher than that of the relative 
fluid velocity Ui?h/ax produced by the small instantaneous slope of the tail, i.e.t 

ah ah ah -+ u- N - 
at ax at - 

(iv) The small magnetic head of the Pod was considered to be executing small 
angular vibratims about a fixed pivot located at  the origin 0. As a simulation 
of the moment applied by the external electromagnetic field to the magnetic 
head it was assumed that 

F(x,  t )  = k sin (Qt + /3) {6(x - E ) ) / E ,  (24) 

where E is small and tends to zero, while the hypothetical pivot was assumed to 
be at x = 0. k is the amplitude of the alternating moment having the form of a 
standing wave with angular velocity Q and phase angle /3. Substituting (18) and 
(19) into (1) and using the preceding assumptions we obtain the following 
differential equation: 

The above equation was solved by Longman & Lavie (1966) but using (m +PA)  
instead of (m +PAC,) and, furthermore, it was assumed that pAc2 = k = constant 
(note that, in our case, according to (31) either c2 or c1 is dependent on the fre- 
quency Q and o n  the kinematic viscosity). Hence, following Longman & Lavie, 
the solution of equation (25) is 

t The assumption (23) implies some restrictions. As we said before, one must distinguish 
between two Rejnolds numbers: one related to the uniform stream velocity U and the 
other related to the lateral velocity of the cross-section. The Oseen equations imply that 
ah/at .g U so that Uah/ax .g %/at 4 U.  Let us suppose that at  given x we have h = a sin wt, 
ah/& = a o  cos wt. The derivative ahlax will be of the order a/,?, where I is the length of the 
body. In  addition to that we remember that the Oseen equations are valid to about 
Re = 5 which means Re = (dah/at)/v = awd/v = 5, where d is the diameter of the body. 
It follows therefore from assumption (23) together with the validity of the Oseen equations 
that 

all .g aw/U g 1;  a < Svlwd. 

45-2 
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Note that since the external force P(x,t)  has the form of a standing wave, 
h(x, t )  represents also transversal movements of standing waves. Therefore the 
wavenumber K in (18)  is zero and the constants c1 and c2 have, in our particular 
case, the form 

The constants A,  and Bn in (26) depend on the initial conditions of the problem, 
but these terms are damped out by the exponentially decaying terms, and for 
steady operation we can drop the free oscillation and obtain 

c1 = 1 + (2v/a2Q)4 -t . . . , c2 = (2vQ/a2)3 + . . . . 

W 

h(x, t )  = C (sinh y / S h a n  + ( - 1),2/2 sin=) 
n=l 1 

In  order to calculate the thrust P and the power FF we use the following 
relations: 

where the mean-square values of the above derivatives at x = 0 and at x = 1 are 
obtained directly from (29). 

where E = m +PAC,. We still need the values of the integrals 
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The value of 

can be computed numerically and this gives: 

I 

where M is some large number which depends on the designed computation 
accuracy. The integral 

1: r;)2dx 
can be computed analytically owing to certain orthogonality conditions satisfied 
by (25). These conditions are explained in the article of Longman & Lavie and 
also in Bisplinghoff, Ashley & Halfman (1955). Thus 

where 

(35) 

(36) 

With the above results we find the average thrust P and the average power 
according to (19) and (21): 

At this point we have to make a few remarks about the thrust and the power 
equations (37) and (38). is the power required to produce the transverse 
movement h(x , t ) .  The power W, supplied by the electromagnetic field can be 
calculated from 

(39) 
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where P(x, t)  is the external force induced by the electromagnetic field and its 
value is defined by (24). Thus 

S(x-e)ah Icsin(Qt+/3)ak(e) - s: a t a x =  E at - W, = ksin(Qt+p)----- 

When e-f 0, we get 

To find the average value of W, we recall that the electromagnetic field supplies 
energy even when the product of sin (Qt  + p)  and cos ( f i t  + p)  is negative, hence 

The swimming velocity can be found by comparing the thrust P (see (37)) to 
the drag D in (3). To illustrate this, for the moment we ignore the viscosity 
i j  and confine ourselves to regions when Q + w,. Then 

or 

Prom (41) we see that U is proportional to a, and one would expect U to increase 
without bound as Q assumes large values. This however is impossible because 

for v = 0, Q =t= u,~ .  
If we assume that (41) is correct it follows that w would increase as s13 while 

would only increase like Q. Let us assume that 

w = ?/llF, (42) 

where rl is the efficiency of the conversion of electromagnetic power into 
mechanical power. Thus 

and it follows that from the power point of view the velocity U would decrease 
as fi increases, regarding ql as independent of fi. In  practice we would expect 
U to increase with Q until s1 reaches certain value fim; then it might decrease 
as Q increases further. This behaviour of U was also noticed from experimental 
results, Lavie (1970b). 
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4. Discussion of results 
I n  $2 the hydrodynamic forces acting on a circular flexible cylinder were 

derived. It was assumed there that the cross-sectional area A remains constant 
over the whole length of the cylinder. The results obtained may be generalized 
to the case of slender cylinders having a local cross-section A(x)  which varies 
along the longiljudinal axis of the body. Since the body is slender and A(%) varies 
slowly we note that, locally, the body shape differs little from that of an inh i t e  
cylinder whose cross-section is A(%) throughout its entire length. Referring to 
equations (22), we can write the potential Q, for the more general case when p A  
is not a Constant, but represents the virtual mass PA(%), as 

K,(ca) cos8 
&,(~a) r ' 

0 = V ( x ,  t)B(x) -- 
The pressure p therefore becomes 

where a is the local radius. 
Using equation (45) to calculate the local lift in (25) we obtain 

(44) 

and consequently find that 

Comparing (46) and (47) with the results obtained from slender-body theory 
(equations (4)) we see that when the viscosity v is zero, and thus c1 = 1 and 
c2 = 0, the results are identical. Note that the apparent mass p x ( x )  can be 
applied also to $he case where the body swims in liquid bounded by a circular 
rigid boundary, such a pipe. In  this case 

b2 + a2(x) 
d(x) = na2(x), ba - &(x)  (49) 

where a(x) is the local radius of the swimming body and b is the radius of the 
pipe. However, this is true when b is muchlarger than a@).  When a($) approaches 
b a further investigation is required because the effects of viscosity. 

We can now modify the results obtained for the Pod in the more general case 
when its cross-mctional area varies slowly such that d(0) 4= d(Z). We seek the 
equation for the swimming velocity U by comparing the thrust P with the drag 
D, i.e. 

P = D = &CDSU2. 
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FIGURE 2. The swimming velocity of Pod A as a function of the frequency. 

Let the reference area S be equal to B(Z), then we find the following quadratic 
equation for the velocity U :  

Equation (50) already takes into account the fact that B(0) =/= B(Z) and assumes 
that the drag coefficient CD is referred to the cross-section B(Z). As we pointed out 
previously (50) is expected to be true while U is proportional to Q (see (41)). 
Afterwards it is expected that U will remain constant for certain values of Q 
and that further increase in Q will cause the velocity lJ to decrease according to 

(43). 
At the Weizmann Institute of Science, experimental tests were conducted to 

measuring the swimming velocity of Pods of different sizes (Lavie 1970b). 
Typical results for the velocity 0 as a function of Q are given in figures 2 and 3 
for two Pods. The first one was 52.7 mm long, its diameter was 3-5 mm and 
the permanent magnet was Alnico 5, 13.3mm long. The second Pod was 
70.8 mm long. The solid and the dotted lines show the expected behaviour of 
the Pod (which was calculated) and the points describe the experimental results. 
The resonance frequency of the first Pod was about 11 Hz. The current wave’s 
shape in the electric coil was not sinosoidal and it happened that the third 
harmonic played an important role. This harmonic also explains the pick ob- 
tained at  one third of the first natural frequency. 

The efficiency of the swimming of the Pod can be calculated according to (36). 
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FIGURE 3. The swimming velocity of Pod B as a function of the frequency. 

Although the expressions for P and for w are quite complicated it can be shown 
that the efficiency will be less than 0.5. Lighthill (19604 has pointed out that 
the swimming efficiency of any body performing lateral movements of standing- 
wave form will be a t  most 0.5. Therefore, in order to increase the efficiency of 
the Pod, a lateral movement in the form of travelling wave such as 

h(x, t )  = g(z) cos (wt - kx) 

must somehow be produced. These movements cannot be produced by the 
present construction of the Pod system. 

Another important problem concerning the Pod is how to increase the supplied 
power q. This power is only a small fraction of the total power of the electro- 
magnetic field produced by an electric coil. One way to increase J4( is, of course, 
to increase the current in the coil and consequently to increase the amplitude k 
ofthe applied moment. Another possibility is to install more than one permanent 
magnet in the plastic tail. This would require a special construction of the Pod, 
and special considerations about the interference between the magnets and the 
lateral movement would have to be made. Lastly it is desirable to push away the 
critical angular velocity and to use the mechanism of absorbing energy from the 
electromagnetic field more efficiently. However, for a Pod with given dimensions 
it seems that increasing Qcr is not practicable. 

5. Conclusions 
Taking into ,account both viscous and inertial forces, the hydrodynamic. 

forces acting on deformable slender bodies placed in a uniform stream have been 
found. Then the results have been applied to derive the theory of the swimming 
ofa Pod and of elastic bodies excited by an external force. Methods for increasing 
the swimming velocity of these bodies have been suggested. 
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